Human Voice

The human voice certainly is the eldest and most spread-out naturetone instrument.
In the course of thousands of years most different tone systems have developed all over the world, that frequently come from naturetones, and still are rooted in the peoples' music and cultures, though the music of the occident, especially pop music, has already driven out many cultural possessions of extraeuropean civilizations and almost destroyed them irretrievingly.

Overtone-singing, however, has been maintained in many parts of the world, as in Tuva, Mongolia, where the famous "Chomi" or "Humi"-singers come from.
Overtone-singing has become established in the western world since the seventies - especially should be mentioned David Hykes and the New York Harmonic Quire, founded 1975. ("Hearing Solar Winds", 1977-1983), Michael Vetter ("Overtone-Oratorium", "Overtones" and "Tambura-Meditation", 1982), Christian Bollmann and "Obertonchor Düsseldorf" ("Rise my soul", 1985-1988, and "Drehmomente", 1989).

Nowadays overtone-singing is fairly common, there are groups and quires making overtone music in nearly all larger cities. Further informations you can get from Chris Amrhein, "Obertonchor Prisma, Salzburg" - "".

Singing in the Naturetone System NTS
The adaption of human voice to the pitches of the Naturetone-System NTS is a question of intonation at best, and it does simply depend on the rapidity of removing the detection of tones from conventional, drummed-in stereotypes.
The ideal of a totally equal temperation, striven for such a long time and still dogged pursued by traditionalists, has turned out to be nothing but an artefact that neither exists in physics nor in human physis - it is not existent in nature: human hearing arranges temperated intervals in ratios of frequencies and prefers the proportions of small numbers, like they are to be found in the naturetone scale. As the occidental tone-systemonly uses a small part of those intervals, singing and playing music in the Naturetone-System is a considerable enlargement of the tone-material, and it can be learned step by step.

First step is including the nature septh - a minor septh, consciously diminished a little bit - that is to build up an harmonic chord, connected with the corresponding major triad ( you need a pure natural third 5/4 in this triad, not a temperated third!).
Next step is the inclusion of the 11th nature-tone, that produces a "neutral third" in relation to the second, as it is used in oriental music ("Arabic third"), and therefore it is not difficult to learn. The thirteenth nature-tone, however, is of importance to describe quartertones and quartertone- alterations (15/13 = 247C, 16/13 = 359C, 13/10 = 455C ), and it has to be adapted harmonically and melodically into its context.




String Instruments
As string instruments like violin, viola, violoncello and doublebase are fretless, naturetons can be well-registered by hearing, at least naturetones from number 1 to number 16, and performed easily by playing corresponding deviations from the common pitches. You can detrminate naturetones even by playing natural flageolets - but note: higher naturetones like 11 and 13 performed as natural flageolets have high frequencies, so that they hardly can be perceived on swinging violin- (or viola-) strings.

Pluck Instruments
Pluck instruments only can be scarcely used in naturetone-music, as the length of the strings is strictly divided by frets, so that these instruments are mostly tuned in equal-semitone temperature or in historic tunings - with the exceptionof instruments, especially constructed for special tunings, like the "enharmonic guitar" by Martin Draaf and Martin Vogel (Martin Draaf, Martin Vogel: "Die enharmonische Gitarre" - Orpheus-Schriftenreihe, Band 45) or instruments to play in "Just Intonation"-tuning.
An inividual tuning of one, two or more strings allows you to adapt different chords, sequences, arpeggios and so on, to the naturetone tuning. Some of those chords and sequencies can be transposed, but caused by the based temperated tuning, such possibilities are not frequent at all.

The same to zither, harp, cymbal and similar instruments: only some particular strings are able to be brought into line with the Naturetone-System, and it takes a lot of experience to handle these instruments in thze right way of playing the new chords and series of this new music. Compromises will be necessary - at the expense of exactitude and purity of sounds.





Woodwind Instruments
Woodwind instruments are also suited for playing naturetone-music. Deviations from temperated tuning can be managed by special fingerings, half-closings or lip pressure. As construction and origin of a woodwind instrument are responsible for ist special sounding, there are no general instructions to play the pitches of naturetone scales. You are recommended to start your own pitch table, and some pitch tables, published by experienced musicians, can be at your assistance: Woodwind: Bartoluzzi: "New Music for Woodwind" Flute: John Fonville and Stuart Quimby: "Microtonal Fingerings for Flute" (Pitch 4/1990) David Whiteside: "Flut in 72-Tone" (Pitch 4/1990) Clarinet: Harold seletsky: "Quartertone Fingerings for the Boehm Clarinet" Michael Richards: "Microtonal Chart for Clarinet", Ian Greitzer: "Clarinet in 72-Tone" (all in: Pitch 4/1990) Bassoon: Johnny Reinhard: "Microtonal Bassoon" (Pitch 4/1990) The repertoire of naturetones is completed by multiphones and flageolets, f.e. Robert Dick: "The other flute"

Brass Instruments
Brass instruments are original naturetone instruments, especially when they are played without pallets.
Pallets may be used to play in other naturetone scales besides the instrument's basic tone. In practice, alterations of a semitone, a whole-tone and a fourth are without any problems - the third only cannot satisfy: it is still tuned in the temperated tuning. It will be necessary in future to construct a special extended tube to achieve a natural third. This does not concern the trobone - the plyer is only advised to intonate exactly the piches of the naturetone scale.

Nature brass instruments (hunting horns, alpenhorn, signal trumpets and others) oonly allow harmonies basing on the instrument's basic tone. In naturetone-music it is advantageous to use several different basictone-instruments.- Didgeridoo even is counted among nature-brass-instruments.






Die meisten Idiophone, soweit sie nicht nur Rhythmus-, sondern auch Melodie-Instrument sind, entsprechen der temperierten Stimmung. Xylophone, Marimbas und Vibraphone müßten, um sie in der Naturtonmusik einsetzen zu können, mit neuen, zusätzlichen Platten bestückt und dadurch im Umfang beträchtlich erweitert werden. Ein virtuoses Spiel ist auf diese Weise nicht mehr möglich.
Einzig die Pedal-Pauken erlauben Tonabweichungen im mikrotonalen Bereich.

Dennoch sind die meisten neuen Musikinstrumente für das Spiel mit Tönen aus dem Naturton-System speziell als Idiophone, meist mit Klangstäbe oder Klangröhren, angelegt worden. Harry Partch (1901-1974) hatte verschiedenste Instrumente in unterschiedlichen Stimmungen konstruiert, meist mit einer kleineren Auswahl an Tönen, die Naturintervalle zum Klingen brachten, bevor er an den Bau des à "Zoomoozophones" mit 31 Klangröhren pro Oktave heranging (1975 von Dean Drummond fertiggestellt).

Ebenfalls aus 31 Röhren pro Oktave, jedoch in gleichen Tonabständen, besteht das "Tubulon", von Ervin Wilson und Craig Hundley, das 1980 fertiggestellt worden ist. Ihm folgte 1990 ein weiteres Instrument, diesmal jedoch mit 53 Röhren pro Oktave - und ebenfalls mit gleichen Tonabständen.

Das à "Escalophon" befindet sich noch in der Entwicklung. Es enthält nur 8 Klangröhren pro Oktave, ist dafür aber mit mehreren Skalen ausgestattet und erlaubt auch das Spiel mit Untertonskalen - insgesamt auf 256 Metallröhren auf 4 Oktaven.





Elektronic Instruments


This instrument, presented 1906 at New York by Dr.Thaddeus Cahill, was regarded as a real sensation - a precurser of sound synthesis. ((à) The enormous gadget of Dr.Thaddeus Cahill)


In the twenties of the last century, Jörg Mager (1880-1938) developed an electronic instrument, based on microtonal systems (tenth- and twelfth-tones) and, in fact, realized it at Donaueschingen Music Days in 1926 in a more modest way as Jörg Mager had pictured himself: "Imagine a wonderful day in spring in Treptow Park (Berlin). There is tower erected in its center, higher than the near-by observatory - the Sphaerophone. The instrument, with musicians and engineers as operators, starts to play. Cascades of sounds.....spraying over thousands of people....."

The trautonium, developed by Oskar sala, was a most favourite instrument in the time of the first great sund films in Germany. It enabled to produce microtones and the pitches of the nature-tone scale as well. In 1937 the Croatian composer Josip Stolcer-Slavenski wrote the the first composition in the nature-tone system - for entirely four trautoniums - but it never had been performed: for the four existing instruments had to be brought together from different parts of Europe; when the second world war had broken out, this undertaking became impossible.

Keyboards: Scalatron
In 1978, USA, George Secor constructed a keyboard to play in different microtonal systems of 17-, 22- and 41- equidistant pitches per octave. He dealt with a suggestion of Ivor Darreg, who commended this system already in the year 1930 to represent pure intervals (Just Intonation).
George Secor also developed a new spelling for the 41-p-system ("New Scales", 1978), and he declared to be able to realize 24.552 pure intervals ("tones") by combining the systems of the instrument. ("Motorola Scalatron").

The (à) Newkeyboard shows a patented new arrangement of keys, 1993 specially developed for nature-tone system NTS by Johannes Kotschy. An octave contains only 16 keys - this makes the instrument easier to handle than the piano-keyboard. But including technical assistance like transposition, combinations and links, the stock of intervals and sounds of this instrument, indeed, is boundless. (see: "")






Organs and Keyboards

Conventional keyboards with seven white keys and five black per octave are not sufficient to play nature-tone scales with 16 pitches or more. But it is possible to play the harmonic nature-tone scale with 8 pitches by altering the pitch level of every single key. Most keyboards and synthesizers are equipped today to perform this operation in an easy way.
You may arrange the keyboard to play the nature-tone scales 8-16 of related scales like G and C, only missing the 15th naturetone of G (= F#):

8 9 10 11 12 13 14 15 16
C D E F# G Ab Bb B C
G A B C# D Eb F - G
For this operation you need the following alterations:
C: +50 C; C#: +03 C; D: +54 C; Eb: +93; E: +36 C; F: +21C; F#: +01 C; G: +52 C; Ab: +91C;
A: +56 C; Bb: +19C; B: +38 C.

Endeavours to construct equal-tempered microtone scales in order to present the pure intervals of the nature-tone scale, first led to the use of keyboard-instruments with a simple division of whole tones and semitones (quartertone-piano) Later on, keyboards had been constructed that allowed to divide whole tones with semitones excluded - so it enabled to play in third- or fifth-tone tunings and others (à) Carrillo-pianos

Quartertone Pianos
In 1893, G.A.Behrens-Senegalden, Berlin, had already invented the "bichromatic piano" with two manuals on top of the other. Years later, in 1924, the quartertone piano came finally to technical maturity: drafts of Alois Hába (1893 - 1970) led to the construction of the three-manual qurtertone piano, built by F.August Foerster, Georgswalde in Bohemia. This extraordinary piano was presented in public for the first time in 1925, during the ISCM-Festival at Prague, Czechoslovakia.

By suggestion of Alois Hába, August Foerster also constructed a sixth-tone harmonium in 1927, which was destined to come to the Prague Music Conservatory. One year before, J&P Schiedmayer, Stuttgart, Germany had finished the first instrument at all for Ferruccio Busoni at Berlin Highschool.

Carrillo Pianos
1940 Julian Carrillo completed the division of semi- and whole tones into microtones in his composition "Pianows Metamorfoseados", a piece with 15 pianos that put all possibilities of dividing a whole tone from the semitone to the sixteenth tone. All these instruments could have been heard at the world exhibition at Bruxelles in 1958. Now they don't exist anymore, with the exception of one third-tone piano, now in possession of Martine Joste, France. In the last years, however, the sixteenth-tone piano has become reconstructed (Sauter-pianos), ordered from interested musicians of different European countries. The whole keyboard of this remarkable instrument includes only one octave (!).

Bosanquet's Harmonium
Bosanquet's Harmonium, also called "Euharmonic Harmonium", with 53 pitche sper octave, has been created in 1876 already, as a gadget to to Bosanquet's essay "Theory of the division of the octave and the practical use of the resulting musical systems". Bosanquet's harmonium really did sound much better than most of the tunings in those days, as the 53-pitch-division comes close to the nature-tone intervals - but George Berhard Shaw, listening to the sounds of Bosanquet's harmonium, thought them to be "unpleasantly slimy".

"The "Harmon", constructed 1883 by James Paul White, Philadelphia, resembles Bosanquet's harmonium.

"Arcifoon" - The Huygens-Fokker Organ
This organ, planned by Adriaan Fokker, and realized by B.Pels and Sons, Netherlands, was placed 1950 in Teyler Museum, Haarlem, Netherlands. Its two manuals contain 11 bars of keys, each one upon the other, and even five bars of pedal keys. The base of ist tuning is a scale of pure thirds (387 Cent), that return to their starting point after series of 31 thirds.
From 1950 to 1955, regularly performances with the new Huygens-Fokker organ took place at Teyler Museum, presenting ancient music literature like Sweelinck and New Music as well, specially written for this organ. In 1960, the organization of recitals has been resumed; the organ still keeps its place at Teyler Musem, where you can take a view on it and listen to its sounds.

The Ekmelic Organ
The ekmelic organ has been constructed by Franz Richter Herf and Rolf Maedel at Mozarteum High School, Salzburg, in 1976. It is tuned in equal twelfth-tones and so allows to play 72 pitches per octave, divided in three manuals. Each of the keys can be altered about a twelfth-tone by hitting a little push-button at the end of the key. The organ enables to play the pitches of the nature-tone scales with adequate precision.
Two ekmelic organs had been built - one of them is used in Ekmelic music recitals and during lessons at Mozarteum High School, the other organ is in possession of the International Ekmelic Music Society. (see: "")

The Newkeyboard has been specially developed for the nature-tone music. It is going to open up new dimensions of music by its multitude of possibilities to play on.







The Instrument of Dr.Thaddeus Cahill

In McClure's Magazine of July 1906 a certain Mr.Baker reports an extraordinary apparatus, shown by Dr. Thaddeus Cahill at New York. A row of sound generators had been stationned in a hall to produce assigned sinus tones, using telephone diaphragmas to make them audible, as loudspeakers did not exist in those days. The produced tones had frequency ratios in relation to a basic tone, and, depending on whether which apparatus had been switched on or how intense it worked, the sound colour of a certain instrument could be heard in the audience.
A huge collection of such gadgets, Mr.Baker wrote, could be put together to build an orchestra, and: "to construct such apparatus would be extremely extensive and expensive, and its practical value rightly has to be questionned." Baker adds "authentic photographies" of the monstrous apparatus, that "looks like a machine hall" to his report. "But the room adjoined was enchantingly filled up with sound - a scientifical perfect sound, never ending, invisible, effortlessly and tirelessly."

No doubt, Dr. Cahill succeeded in inventing the first sound synthesis in the world.







in seiner Schrift "Genesis of a Music" (1949) hatte Harry Partch (1901-1974) ein 43-stufiges Tonsystem entwickelt, dessen Intervalle ausschließlich aus der Naturtonreihe hergeleitet werden und in ihren Zahlenproportionen nur die Zahlen 2,3,5,7,9,und 11 (oder deren Vielfache) enthalten. Für das Zoomoozophone hatte er aus diesem Tonvorrat 31 ausgewählt und ein Instrument entworfen, das aus 129 Metallröhren besteht, verteilt auf 4 Oktaven mit je 31 Tönen. Ergänzt wird das System mit 5 weiteren Röhren, um auch seine Komposition "Two Studies on Ancient Greek Scales" und John Cages' "Haikai für Flöte und Zoomoozophone" darauf spielen zu können.
Das Instrument wurde erst nach seinem Tod von Dean Drummond vollendet und in dessen Ensemble "Newland" in Konzert-Tourneen, u.a. auch in Europa, eingesetzt.
Für das Zoomoozophone komponierten neben Harry Partch und Dean Drummond auch Ben Johnston, Skip la Plante, Joan la Barbara, David Krakauer und John Cage.

Zoomoozophone: Töne

1/1 - 16/15 - 12/11 - 11/10 - 10/9 - 9/8 - 8/7 - 7/6 - 6/5 - 11/9 - 5/4 - 14/11 - 9/7 - 4/3 - 11/8 - 7/5 -
-10/7 - 16/11 - 3/2 - 14/9 - 11/7 - 8/5 - 18/11 - 5/3 - 12/7 - 7/4 - 16/9 - 9/5 - 20/11 - 11/6 - 15/8 - (2/1)








Die "Klangtürme" - erstmals beim Festival "Kraftklänge am Irrsee" im Mai 2002 im Einsatz - sind Teil eines Projekts, das zu einem neuen Instrument, dem "Escalophon", führen soll. Dieses Instrument - vergleichbar mit einem großen Ensemble von Röhrenglocken, wird bestückt mit etwa 256 Klangröhren im Umfang von 4 Oktaven und soll das Spiel mit 8 Naturtonreihen (die alle in Beziehung zueinander stehen) ermöglichen, aber auch das Spiel mit Untertonreihen. Es stellt eine Weiter-entwicklung des von Harry Partch in den 70er Jahren entworfenen und von Dean Drummond vor 2 Jahrzehnten in New York vollendeten "Zoomoozoophones" dar, denn es bezieht nicht nur die in unserem geläufigen Tonsystem nicht verwendeten Septim- und 11er-Intervalle mit ein, sondern auch den 13. Naturton und damit alle Töne der Naturtonskala von 1-16.

Abb. Klangtürme auf dem Irrsee, Salzkammergut, 31.05.2001

Anders als bei Aluminiumröhren ist die Abstimmung der hier verwendeten Messingröhren, zur Verfügung gestellt von den DIEHL-Metallwerken, Röthenbach an der Pegnitz bei Nürnberg, von vielen Faktoren abhängig:

  • von der Art der Legierung und dem spezifischen Gewicht
  • vom Durchmesser,
  • von der Wandstärke,
  • von der Rohrlänge
  • und von der Bohrung (Schwingungsknotenpunkt).

Überraschend ist dabei der relativ einfache mathematische Zusammenhang zwischen Rohrlänge und Tonhöhe bei völlig gleich beschaffenen Rohren: das Verhältnis von den ein Intervall bildenden zwei Tonhöhen entspricht der umgekehrten Relation der Quadratwurzel der Rohrlängen. Dies ist fast analog zum Verhältnis schwingender Saiten oder Luftsäulen zu sehen - nur im Unterschied dazu gibt bei den Rohren die Quadratwurzel der Längenproportion den Ausschlag für die Tonhöhen.

Beispiel: Der reinen Terz 5/4 entspricht eine schwingende Saite von 4/5 ihrer Gesamtlänge (4/5 = 0,8). Die Rohrlänge des Terztones dagegen ist v4/5 der ursprünglichen Länge ( v4/5 = 0,89443).

Doch die Praxis hat sich als wesentlich komplizierter erwiesen. Die erzielten Ergebnisse weichen manchmal trotz präziser Berechnung von den erwarteten Ergebnissen ab, denn die Charakteristik der Rohre bleibt trotz Eingrenzen durch die vorhin erwähnten Parameter manchmal doch recht unvorhersehbar. Die Arbeit an dem neuen Instrument wird wohl noch einige Jahre weitergehen.

ESCALIER (frz.: (Ton-) Leiter)
KALO (griech.: schön)

Der Klang des ESCALOPHONS wird sich vom Klang angeschlagener Glocken und Röhrenglocken unterscheiden. Denn aus den beim Anschlag erzeugten Klangspektren bildet sich nach kurzer Zeit ein präziser Ton aus, der länger bestehen bleibt. Dieser wird mit dem Mikrofon "abgefangen" und mit den anderen ausgewählten Tönen kombiniert. Dazu wird in der Endausbauphase des Escalophon eine elektromagnetische Anschlagtechnik installiert und von einem Spieltisch aus gesteuert werden.

Die nächste Projektstufe: eine Klangpyramide von 5,20m Höhe, bestehend aus 5 Klangtürmen
(Entwurf: Johannes Kotschy)